9,742 research outputs found

    Hydrodynamic air lubricated compliant surface bearing for an automotive gas turbine engine. 1: Journal bearing performance

    Get PDF
    A 38.1 mm (1.5 inch) diameter Hydresil Compliant Surface Air Lubricated Journal Bearing was designed and tested to obtain bearing performance characteristics at both room temperature and 315 C (600 F). Testing was performed at various speeds up to 60,000 rpm with varying loads. Rotating sensors provided an opportunity to examine the film characteristics of the compliant surface bearing. In addition to providing minimum film thickness values and profiles, many other insights into bearing operation were gained such as the influence of bearing fabrication accuracy and the influence of smooth foil deflection between the bumps

    Comment on: Diffusion through a slab

    Full text link
    Mahan [J. Math. Phys. 36, 6758 (1995)] has calculated the transmission coefficient and angular distribution of particles which enter a thick slab at normal incidence and which diffuse in the slab with linear anisotropic, non-absorbing, scattering. Using orthogonality relations derived by McCormick & Kuscer [J. Math. Phys. 6, 1939 (1965); 7, 2036 (1966)] for the eigenfunctions of the problem, this calculation is generalised to a boundary condition with particle input at arbitrary angles. It is also shown how to use the orthogonality relations to relax in a simple way the restriction to a thick slab.Comment: 3 pages, LaTeX, uses RevTe

    Development of a polysilicon process based on chemical vapor deposition (phase 1)

    Get PDF
    A dichlorosilane-based reductive chemical vapor deposition (CVD) process demonstrated is capable of producing, at low cost, high quality polycrystalline silicon. Testing of decomposition reactor heat shields to insure that the shield provides adequate personnel protection assuming a worst case explosion was completed. Minor modifications to a production reactor heat shield provided adequate heat shield integrity. Construction of the redesigned PDU (Process Development Unit) to accommodate all safety related information proceeded on schedule. Structural steel work was completed as is the piping and instrumentation design work. Major pieces of process equipment were received and positioned in the support structure and all transfer piping and conduits to the PDU were installed. Construction was completed on a feed system for supplying DCS to an intermediate sized reactor. The feed system was successfully interfaced with a reactor equipped with a modified heat shield. Reactor checkout was completed

    Development of a polysilicon process based on chemical vapor deposition, phase 1

    Get PDF
    The development of a dichlorosilane-based reductive chemical vapor deposition process for the production of polycrystalline silicon is discussed. Experimental data indicate that the ease of ignition and explosion severity of dichlorosilane (DCS)/air mixtures is substantially attenuated if the DCS is diluted with hydrogen. Redesign of the process development unit to accommodate safety related information is described. Several different sources of trichlorosilane were used to generate a mixture of redistributed chlorosilanes via Dowex ion exchange resin. The unseparated mixtures were then fed to an experimental reactor in which silicon was deposited and the deposited silicon analyzed for electrically active impurities. At least one trichlorosilane source provided material of requisite purity. Silicon grown in the experimental reactor was converted to single crystal material and solar cells fabricated and tested

    Solar silicon via the Dow Corning process

    Get PDF
    Carbon, as a reductant for quartz, must be made available so as to have suitable reactivity in conjunction with high purity, especially with respect to boron and phosphorus. A detailed experimental plan was developed to do this. Different sources of carbon were selected to be subjected to various purification methods and reactivity-enhancement processes. A developmental scale arc furnace was installed to perform quartz-carbon reactivity testing

    The Conference on High Temperature Electronics

    Get PDF
    The status of and directions for high temperature electronics research and development were evaluated. Major objectives were to (1) identify common user needs; (2) put into perspective the directions for future work; and (3) address the problem of bringing to practical fruition the results of these efforts. More than half of the presentations dealt with materials and devices, rather than circuits and systems. Conference session titles and an example of a paper presented in each session are (1) User requirements: High temperature electronics applications in space explorations; (2) Devices: Passive components for high temperature operation; (3) Circuits and systems: Process characteristics and design methods for a 300 degree QUAD or AMP; and (4) Packaging: Presently available energy supply for high temperature environment

    Photonic crystal polarizers and polarizing beam splitters

    Full text link
    We have experimentally demonstrated polarizers and polarizing beam splitters based on microwave-scale two-dimensional photonic crystals. Using polarized microwaves within certain frequency bands, we have observed a squared-sinusoid (Malus) transmission law when using the photonic crystal as a polarizer. The photonic crystal also functions as a polarizing beamsplitter; in this configuration it can be engineered to split incident polarizations in either order, making it more versatile than conventional, Brewster-angle beamsplitters.Comment: 7 pages, 3 figures, published Journal Applied Physics 93, 9429 (2003

    Microwave measurements of the photonic bandgap in a two-dimensional photonic crystal slab

    Get PDF
    We have measured the photonic bandgap in the transmission of microwaves through a two-dimensional photonic crystal slab. The structure was constructed by cementing acrylic rods in a hexagonal closed-packed array to form rectangular stacks. We find a bandgap centered at approximately 11 GHz, whose depth, width and center frequency vary with the number of layers in the slab, angle of incidence and microwave polarization.Comment: 8 pages, 3 figures, submitted to Journal of Applied Physic

    Development of integrated thermionic circuits for high-temperature applications

    Get PDF
    Integrated thermionic circuits (ITC) capable of extended operation in ambient temperatures up to 500 C are studied. A set of practical design and performance equations is demonstrated. Experimental results are discussed in which both devices and simple circuits were successfully operated in 5000 C environments for extended periods. It is suggested that ITC's may become an important technology for high temperature instrumentation and control systems in geothermal and other high temperature environments
    corecore